

MOTORS & CONTROLLERS

Product Catalog

MOTORS & CONTROLLERS PRODUCT CATALOG

TABLE OF CONTENTS

Ward Leonard Overview	V
FMD Overview	V
Facilities Overview	
Sales & Service Support	.VII
Our Locations	VIII
Motors	1
Novo ¹	
Compressor Motor	5
Noise Quiet Motor	6
Pump Motor	7
Servo Motor	
Winch Motor	
Motor and Heater Controllers	
Motor and Heater Controller	
Controller Part Numbering Matrix	.14
Automatic Bus Transfers	
Automatic Bus Transfers	
Decoding The Ward Leonard ABT Catalog Numbering System	
Contactors	
Contactors	
Relays	
Overload Relays	
Magnetic Overload Relays	
Rotary/MDR Relays	
Indicator Lamps/Bulbs	
Indicator Lamps/Bulbs	
Indicator Light Kits	
Indicator Light Holders	
Light Lenses	.36
Starters and Pushbutton Stations	
Manual Starters	
Panel Mounted Pushbuttons	
Remote Pushbutton Stations	
Master Switches	
Master Switches	
Panel Mounted Switches	
Component Accessories	.47
Control Power Transformers	
Fuse Blocks	
Power Terminal Boards	
Switchboxes	
Resources	. III

Ward Leonard Overview

An industry-leading provider of motors, control components, and systems integration solutions for surface, subsurface, and land-based naval applications. For more than 120 years, the company has been supplying the U.S. Navy with high-reliability products and comprehensive services.

FMD - Overview

Stacking the decks with best-in-class marine technologies and service solutions. Fairbanks Morse Defense has mastered that balance over more than a century, configuring the delivery of every customer engagement to meet the needs of the moment. We deliver an advantage to the U.S. Fleet with a growing array of best-in-class marine technologies, OEM parts, and turnkey services – all from a single, trusted source.

Our Locations

Fairbanks Morse Defense

701 White Avenue Beloit, WI 53511 Phone: 1-800-356-6955

www.FairbanksMorseDefense.com

American Fan

Phone: 1-866-771-6266 **Federal Equipment Co.** Phone: 1-877-435-4723

Hunt Valve Company Phone: 1-800-321-2757 Maxim Watermakers

Phone: 1-318-629-2460

Research Tool & Die Works

Phone: 1-310-639-5722

Ward Leonard

Phone: 1-860-283-5801

Welin Lambie

Phone: +44 1384-78294

NOVO¹ MOTOR

The Fairbanks Morse Defense commitment to technology innovation within maritime defenses is demonstrated through our newest AC Induction motor line for Surface Navy Vessels; the Ward Leonard Novo1 Motor line. This new motor line offers 12 frame sizes with a wide variety of configurations allowing for a very customizable and economical motor. They are designed to withstand the most destructive of impacts, manufactured under ISO-9001 certification and meets the requirements of MIL-DTL-17060.

Key Features

- Modular design allows for customization making it the only motor you need
- · Commonality of parts
- Variety of mounting configurations, speeds and enclosures to meet shipboard requirements
- Built to latest Navy mil-spec standards: MIL-DTL-17060 Revision G Amendment 1
- CBM+ ready
- VFD Compatible

Advantages

- High reliability
- · Cost effective & economical

NOVO¹ MOTOR

НР	3600 RPM		1800 RPM		1200 RPM		900 RPM	
пг	DPP	TEFC	DPP	TEFC	DPP	TEFC	DPP	TEFC
1	182TN	182TN	182TN	182TN	182TN	182TN	182TN	184TN
1 1/2	182TN	182TN	182TN	182TN	182TN	184TN	184TN	213TN
2	182TN	182TN	182TN	182TN	184TN	213TN	213TN	215TN
3	182TN	184TN	182TN	184TN	213TN	215TN	215TN	254TN
5	182TN	213TN	184TN	213TN	215TN	254TN	254TN	256TN
7 1/2	184TN	215TN	213TN	215TN	254TN	256TN	256TN	256TN
10	213TN	254TN	215TN	254TN	256TN	256TN	286TN	286TN
15	215TN	256TN	254TN	256TN	286TN	286TN	286TN	326TN
20	254TN	286TN	256TN	286TN	286TN	326TN	326TN	326TN
25	256TN	286TN	286TN	286TN	326TN	326TN	326TN	365TN
30	286TN	326TN	286TN	326TN	326TN	365TN	365TN	365TN
40	286TN	326TN	326TN	326TN	365TN	365TN	365TN	405TN
50	326TN	365TN	326TN	365TN	365TN	405TN	405TN	405TN
60	326TN	365TN	365TN	365TN	405TN	405TN	405TN	445TN
75	365TN	405TN	365TN	405TN	405TN	445TN	445TN	445TN
100	365TN	445TN	405TN	445TN	445TN	445TN	445TN	505TN
125	405TN	445TN	405TN	445TN	445TN	445TN	505TN	505TN
150	445TN	445TN	445TN	445TN	505TN	505TN	505TN	505TN
200	445TN	505TN	445TN	505TN	505TN	_	_	_
250	445TN	505TN	505TN	505TN	505TN	_	_	_

COMPRESSOR MOTOR

Built to MIL-Spec requirements, Ward Leonard compressor motors are designed for decades of use in the toughest environments. Ward Leonard compressor motors provide duty-cycle performance to withstand the demanding requirements of Naval compressors while providing efficient power at constant speeds without fluctuation.

Key Performance Ratings

- 1/16 to 350 HP
- 2 16 Pole Speeds
- 440V/3/60Hz
- · Open and Closed Motor Enclosures
- Service A and C Applications
- Grade A and B Shock & Vibration Capable

Key Features

- Class F Sealed Insulation System
- · Vacuum Pressure Impregnation
- Nodular Iron Frame Construction
- · Precision Bearings
- Low Structure Borne Vibration Performance
- Single and Multiple Stator Winding Designs

- MIL-M-17060/MIL-DTL-17060, Alternating Current Motors
- MIL-M-17059, Fractional Horsepower Motors
- MIL-S-901, Shock Testing
- MIL-STD-167, Vibration Testing
- MIL-STD-740, Noise Testing
- MIL-STD-2037, Vacuum Pressure Impregnation

NOISE QUIET MOTOR

Navy Noise Quiet Motors manufactured by Ward Leonard assist in contributing to the U.S. Navy's ability to operate anywhere in the world. These motors power critical pump and compressor applications on Los Angeles, Ohio, and Virginia Class subsurface fleets.

Ward Leonard's low-structure-borne noise performance motors are used extensively on U.S. Navy submarines. These shock-and-vibration-proof motors are also able to fit in tight spaces – an absolute premium requirement on a military submarine – while reducing the vessel's signature and detectability.

Key Performance Ratings

- 1/16 to 350 HP
- 2 16 Pole Speeds
- 440V/3/60Hz
- · Service A and C Applications
- Grade A and B Shock & Vibration Capable

Key Features

- Class F Sealed Insulation System
- Vacuum Pressure Impregnation
- Nodular Iron Frame Construction
- Precision Bearings
- Low Structure Borne Vibration Performance
- Single and Multiple Stator Winding Designs

- MIL-M-17060/MIL-DTL-17060, Alternating Current Motors
- MIL-M-17059, Fractional Horsepower Motors
- MIL-S-901, Shock Testing
- MIL-STD-167, Vibration Testing
- MIL-STD-740, Noise Testing
- MIL-STD-2037, Vacuum Pressure Impregnation

PUMP MOTOR

Ward Leonard motors are built to accommodate the severe duty requirements of Navy pump applications in the hazardous environments encountered by combat vessels.

Ward Leonard pump motors are built to withstand harsh environments and provide reliable service in demanding Naval pump applications including brine, graywater, ground food waste, cooling, bilge, firefighting, and others.

Key Performance Ratings

- 1/16 to 350 HP
- 2 16 Pole Speeds
- 440V/3/60Hz
- · Open and Closed Motor Enclosures
- Service A and C Applications
- Grade A and B Shock & Vibration Capable

Key Features

- · Class F Sealed Insulation System
- Vacuum Pressure Impregnation
- Nodular Iron Frame Construction
- Precision Bearings
- Low Structure Borne Vibration Performance
- Single and Multiple Stator Winding Designs

- MIL-M-17060/MIL-DTL-17060, Alternating Current Motors
- MIL-M-17059, Fractional Horsepower Motors
- MIL-S-901, Shock Testing
- MIL-STD-167, Vibration Testing
- · MIL-STD-740, Noise Testing
- MIL-STD-2037, Vacuum Pressure Impregnation

SERVO MOTOR

Ward Leonard MIL-Spec servo motors offer wide-ranging designs to support all fan applications in the fractional to integral horsepower range.

Our servo motors are designed to support fan applications including aero foil, mixed-flow, Type-A, centrifugal, CPS, and others. Ward Leonard servo motors are built to last for decades of use in the harsh environments of life at sea.

Key Performance Ratings

- 1/16 to 350 HP
- 2 16 Pole Speeds
- 440V/3/60Hz
- Open and Closed Motor Enclosures
- Service A and C Applications
- · Grade A and B Shock & Vibration Capable

Key Features

- Class F Sealed Insulation System
- Vacuum Pressure Impregnation
- Nodular Iron Frame Construction
- · Precision Bearings
- Low Structure Borne Vibration Performance
- Single and Multiple Stator Winding Designs

- MIL-M-17060/MIL-DTL-17060, Alternating Current Motors
- MIL-M-17059, Fractional Horsepower Motors
- MIL-S-901, Shock Testing
- MIL-STD-167, Vibration Testing
- · MIL-STD-740, Noise Testing
- MIL-STD-2037, Vacuum Pressure Impregnation

WINCH MOTOR

Ward Leonard has a long history of providing MIL-Spec motors to drive winches on U.S. Navy aircraft carriers and other vessels deployed throughout the world.

Ward Leonard 440 Volt AC MIL-Spec induction motors feature high starting torque and multiple speeds to provide optimal power to drive gypsy, span wire, saddle winches, and capstans.

Key Performance Ratings

- 1/16 to 350 HP
- 2 16 Pole Speeds
- 440V/3/60Hz
- Open and Closed Motor Enclosures
- Service A and C Applications
- Grade A and B Shock & Vibration Capable

Key Features

- Class F Sealed Insulation System
- Vacuum Pressure Impregnation
- Nodular Iron Frame Construction
- Precision Bearings
- · Low Structure Borne Vibration Performance
- Single and Multiple Stator Winding Designs

- MIL-M-17060/MIL-DTL-17060, Alternating Current Motors
- MIL-M-17059, Fractional Horsepower Motors
- MIL-S-901, Shock Testing
- MIL-STD-167, Vibration Testing
- · MIL-STD-740, Noise Testing
- MIL-STD-2037, Vacuum Pressure Impregnation

MOTOR AND HEATER CONTROLLERS

MOTOR AND HEATER CONTROLLERS

With more than 2,000 designs available, Fairbanks Morse Defense and Ward Leonard offer a controller to fit every application. Known for their durability and longevity, our controllers are the dependable solution maritime vessels can rely on.

Our controllers are built to serve in dedicated high-shock, high vibration, high-abuse environments and last for decades. We are uncompromising on quality control and assurance, so we manufacture each of the individual components on all of our controls. We build and test them to meet the DoD's most stringent specs.

- Performance ratings: size 0 to size 7
- Over 2,000 designs available
- 3D modeling allows for custom design to meet your specific application
- MIL-DTL-2212 specification

CONTROLLER PART NUMBERING MATRIX

1234-567890-ABCDE

123 1 307 030 7 13 03 2	
1 Product Type	7, 8 HP rating
(4) Motor Starter	(01) One winding Non HP specific
(5) Heater Controller	(02) 2 winding Non HP specific
(6) Control Panel	(05) 5 HP
2 Power Configuration	(06) 10 HP
(0) Single speed Non Reversing	(07) 25 HP
(2) Single Speed Reversing	(08) 50 HP
(3) 2 Speed, Non Reversing	(09) 75 HP
(5) Wye-Delta	(10) 100 HP
(6) Reduced Voltage Autotransformer	(20) 200 HP
(7) Special	(25) 250 HP
(9) Two Speed, Reversing	(30) 300 HP
3 Style	(40) 400 HP
(0) IC518 Series	(50) 500 HP
(1) N160 Series	(60) 600 HP
(2) N461 Series	(99) Special
(3) IEC Series	9 Control Voltage
4 Output contactor size	(0) Customer Supplied Control Voltage
(1) thru (9)	(1) 115VAC Coil Voltage
5 Output Configuration	(2) 220 AC Coil Voltage
(1) 2 Speed, 1 winding	(4) 440 AC Coil Voltage
(2) 2 speed, 2 winding	(6) 24VAC
(3) Single speed	(7) 24VDC
(4) Multiple Outputs	(9) Special
(5) 2 Stage Starting, Voltage Regulated 400 Hz	
(9) Special* (Older designs only)	
* Older special designs are indicated by a '9'	

followed by a 3 digit sequential identifier.			
6 Enclosure Type	O Motor Protection		
(1) GE Drip-proof	(0) None		
(2) WL Take apart	(1) Thermal Overload		
(3) GE Wrap around	(2) Fused Main		
(4) Watertight enclosure	(3) Electronic Overload		
(5) Explosion proof	(9) Special		
(6) Submersible			
(7) Saddle			
(8) WI Drip-proof Enclosure			
(9) Special (Frame Construction, etc)			
(0) Open			
ABCDE Masterplan number			

Example:

4010-380111-24184, Ward Leonard Motor Starter

Single Speed, Non Reversing, Size 0, Drip-proofenclosure, 115 VAC Control, Master plan 24184

AUTOMATIC BUS TRANSFERS

AUTOMATIC BUS TRANSFERS

The Fairbanks Morse Defense and Ward Leonard Automatic Bus Transfers (ABT) allow for the flow of uninterrupted power supply to your emergency power source. Our ABT Switches are the trusted name in reliability, providing the necessary power when needed most.

Our Automatic Bus Transfer (ABT) Switches provide for automatic or manual transfer of three-phase AC loads in cases where a low voltage or no voltage event occurs on a power supply. Our ABTs transfer the load from the emergency bus to the normal bus automatically or manually, depending on your unique requirements.

Key Performance Ratings

- 25-Amp to 400-Amp loads
- · Switching time as fast as 50 msec

- A1, A2, or A3 configurations
- · Modular architectures
- MIL-PRF-17773 specification

DECODING THE WARD LEONARD ABT CATALOG NUMBERING SYSTEM

Reference: W/L Spec G-103.33 Rev A dated 7/30/85, Updated 11/30/17, HHP, Rev 1.1

The ABT Catalog Number is an 11 position descriptor, in the form NYYY-XXXXXX. The "N" in position 1 is common to all catalog numbers. (The dash is one of the positions and is position 5)

Number "YYY" in positions 2, 3, and 4 have the following meaning:

ТҮРЕ	AMP RATING	CATALOG NUMBER
A1	25	N296-XXXXXX
A1	50	N297-XXXXXX
A1	100	N294-XXXXXX
A1	150	N298-XXXXXX
A1	250	N292-XXXXXX
A1	300	N299-XXXXXX
A1	400	N295-XXXXXX
A1	600	N293-XXXXXX
A2	25	N286-XXXXXX
A2	50	N287-XXXXXX
A2	100	N284-XXXXXX
A2	150	N288-XXXXXX
A2	250	N282-XXXXXX
A2	300	N289-XXXXXX
A2	400	N285-XXXXXX
A2	600	N283-XXXXXX
A3	25	N276-XXXXXX
A3	50	N277-XXXXXX
A3	100	N274-XXXXXX
A3	150	N278-XXXXXX
A3	250	N272-XXXXXX
A3 or A11	300	N279-XXXXXX
A3	400	N275-XXXXXX
A3	600	N273-XXXXXX

Notes: a) For special types "S" and "A11" see examples end of page 2

b) 600 amp ABT's not currently being manufactured. Not on QPL.

DECODING THE WARD LEONARD ABT CATALOG NUMBERING SYSTEM

Position 5 (dash): General Info/Type:

(-) Standard, steel, as in chart aboveA Non-magnetic (Stainless Steel)E Steel, Trapezoid Extended Housing

F Stainless Steel, Trapezoid Extended Housing

Number "XXXXXX" in positions 6, 7, 8, 9, 10, and 11 have the following meaning:

Position 6: 1 Single phase

3 3 phase

9 special design, positions 7,8,9 do not conform to descriptions below. Selected as needed. See examples

at end of listing.

Position 7: Enclosure

0 Open (no enclosure)1 Watertight Stainless Steel

4 Watertight Steel

6 Dripproof Stainless Steel

8 Dripproof Steel

Position 8: ABT built to Navy Specification

0 DOD-17773B(SH) (old ABT spec – obsolete - not

fused)

1 MIL-PRF-17773D(SH) (current ABT spec - fused)

Position 9: Frequency

4 400 Hz 6 60 Hz

Positions 10 & 11: Operating Voltage

11 120 VAC 41 450 VAC

DECODING THE WARD LEONARD ABT CATALOG NUMBERING SYSTEM

EXAMPLES OF CATALOG NUMBERS,

N274-380641: A3, 100amp, 3phase, dripproof steel enclosure, DOD spec, 60Hz, 450V

N289-341611: A2, 300amp, 3phase, watertight steel enclosure, MIL-PRF spec, 60Hz, 120V

N277A361641: A3, 50amp, 3phase, dripproof stainless steel encl., MIL-PRF spec, 60Hz, 450V

N276-381411: F3, 25amp, 3phase, dripproof steel enclosure, MIL-PRF spec, 400Hz, 120V

N287E381611: A2, 50amp, 3phase, dripproof extended steel encl., MIL-PRF spec, 60Hz, 120V

"SPECIAL" DESIGNS: (900000 numbers)

Position 7: Navy Specification **Positions 8 & 9:** Assigned to a specific design

Variable switching time delay (RFPS) (Most common "non-standard" ABT's)

N279-900241: A3S, 300 amp, 3 phase, dripproof steel, DOD spec, 60Hz, 450V N279-900341: A3S, 300 amp, 3 phase, watertight steel, DOD spec, 60Hz, 450V N279-910241: A3S, 300 amp, 3 phase, dripproof steel, MIL-PRF spec, 60Hz, 450V N279-910341: A3S, 300 amp, 3 phase, watertight steel, MIL-PRF spec, 60Hz, 450V N274-900241: A3S, 100 amp, 3 phase, dripproof steel, DOD spec, 60Hz, 450V

Non-selective – Power Seeking (type A11)

N279-910441: A11, 300 amp, 3 phase, dripproof steel, MIL-PRF spec, 60 Hz, 450 Volts

Assign positions 8,9 in sequence as new special variations occur05, 06, Example: Watertight A11 300 amp 450 volt MIL-PRF would be N279-910541

CONTACTORS

CONTACTORS

As the only manufacturer that offers the 3 Navy QPL contactor designs, Fairbanks Morse Defense and Ward Leonard provide the solution to meet your required specifications.

Meeting MIL-Standard qualification MIL-DTL-2212, our portfolio of electrical contactors includes:

- Proprietary-designed contactors
- GE-design contactors
- · Navy-standard designs

Key Performance Ratings

Sizes 0 - 7

- · Operation: magnetic solenoid
- Multiple configuration types to address a wide range of applications different form factors of contactor families fit into customer required spaces
- MIL-DTL-2212 specification AC Control

RELAYS

OVERLOAD RELAYS

Fairbanks Morse Defense and Ward Leonard overload relays are ideal for critical applications in the toughest environments. These durable relays are able to withstand high shock and vibration to perform in the harshest conditions.

We design and manufacture solid-state motor overload protection relays that adhere to NAVSEA's stringent MIL-R-2033 standards. These state-of-the-art products:

- Are available in thermal, AC and DC magnetic and reset versions
- Are designed to increase monitoring capability and performance, while decreasing controller size and weight
- Support Modbus, Profibus, and Ethernet protocols on multiple products

Built to MIL-Spec requirements, our compressor motors are designed for decades of use in the toughest environments and provide duty-cycle performance to meet the requirements of Naval compressors while providing efficient power at constant speeds without fluctuation.

Key Performance Ratings

- Thermal compensation for more predictable overload exposure
- N154 tested up to 100'C

- Function: motor overload protection
- Thermal, AC, and DC magnetic set and reset versions
- Operation: magnetic inverse time delay type, self-repeat
- MIL-R-2033 specification
- MIL-DTL-2212 specification

MAGNETIC RELAYS

Series N130 Magnetic Relays are recommended for applications where the pilot or control circuit must be established and interrupted repeatedly. These auxiliary control relays in one, two, three and four pole combinations are available for operation on A.C. (480 volts max.) and D.C. (250 volts max.) circuits.

Key Performance Ratings

- 1, 2, 3, or 4, poles
- AC up to 480V and DC up to 250V Max
- · With or without magnetic blowouts
- · Continuous duty

- · Arc blowout available
- Relays from all 3 QPL manufacturer designs (Ward Leonard, GE, Cutler Hammer)

ROTARY/MDR RELAYS

Fairbanks Morse Defense and Ward Leonard MDR Rotary Relay Series provides increased contact ratings compared to similar relays used in military and heavy-industrial applications. The increased contact rating enables the MDR Rotary Relay Series to be used in situations beyond the current-carrying capability of similar relays.

Unlike other relay models that use two contacts in series to achieve this increased rating, our MDR rotary relay design frees contact terminals to control additional circuitry and simplify control wiring.

Engineered to MIL-R-19523B (SH) and QPL for vibration, shock, and endurance testing, exceeding 500,000 operations, the MDR Rotary Relay Series are backwards compatible with models from other manufacturers. High reliability, high performance and increased contact ratings make the durable MDR Rotary Relay ideal for the most demanding applications.

Key Performance Ratings

High current capacity on contacts

- · Contact arrangements 4 PDT-12 PDT
- · Increased contact ratings eliminates need to have connect in series
- Standard and low noise options
- Standard meets requirement of MIL-R-19523B (SH)

INDICATING LAMPS/BULBS

Our indicator lights are incandescent or light-emitting diode (LED) and handle voltages from 117V to 440V AC or 2V – 120V DC. They're available with red, green, amber, blue, white, and clear color lenses as well as flashing lamps and watertight units.

The Dual Amp Indicator Light revolutionized the single lamp concept. Dual Amp Indicator Light features include:

- 2.5 volts alternating current (VAC) lamps in parallel
- Independently supplied by a 1.8 VAC closely regulated transformer for long lamp life
- Voltages such as 117 or 450 VAC
- Availability of direct current voltages (VDC) Included hardware (O-ring, hex nut, cup washer) Midget screw base lamps & lenses (purchased separately)

Additionally, FMD can build light unit assemblies for watertight indicator lights.

Indicating lights to be integrated into panels, controllers or other products with a variety of configurations to maximize available space behind the mounting panel.

Key Performance Ratings

- 1.8 to 28V AC or DC
- LED or incandescent

- Dual amp indicator lights
- Application with DC 50, 60, or 400 Hz AC systems
- 90' and straight line configurations
- Shock, vibe, moisture resistance, dielectric withstanding voltage and voltage insulation tested

INDICATING LIGHT KITS

Configured kits including lamp, gaskets, lenses, name plates and light holder.

Key Performance Ratings

· Low amperage draw

- Dual amp indicator lights
- Application with DC 50, 60, or 400 Hz AC systems
- 90' and straight line configurations
- Shock, vibe, moisture resistance, dielectric withstanding voltage and voltage insulation tested
- LED or incandescent bulbs
- Variety of mounting configurations to maximize available space on a panel

INDICATOR LIGHT HOLDERS

This light is to be used on alternating current where space behind the panel is limited and where a light with the built-in transformers which can be mounted elsewhere on the panel and can be connected to the LH 97 to obtain the required voltages. The lamp screw shells are grounded to the case so that when the lamps are removed, there is no shock hazard to personnel.

Application with 50, 60, or 400 Hz A.C. systems.

Lamp Accommodation – W-L-00111/56 (#1769; MS15612-3)

Lenses Available - LC38 thru 45

Key Performance Ratings

- 50,60, or 400 Hz
- · Up to 2 bulbs
- · LED or Incandescent bulbs
- 12 440VAC
- 2 240 VDC

- · Dual amp indicator lights
- Application with DC 50, 60, or 400 Hz AC systems
- 90' and straight line configurations
- Shock, vibe, moisture resistance, dielectric withstanding voltage and voltage insulation tested

LIGHT LENSES

These panel mounted lenses are in accordance with MIL-L-3661/55 thru 59. Any engraving must be specified along with color since these lenses are specially engraved to your order.

Key Performance Ratings

- Flat and bubble lenses in variety of colors
- Plexiglass, nylon/plastic or glass

- Bubble Caps
- Flat Flush
- Dimmable
- · Text within flat lens available
- MIL-L-3661/55 thru 59

STARTERS AND PUSH BUTTON STATIONS

MANUAL STARTERS

Built to be reliable, our starters are designed for continuous duty and general-purpose service to provide decades of use.

Manual starters are flush mounted for panel installation, feature drip-proof enclosures for surface mounting, thermostatic bimetal overload protection, with a low-voltage release effect, where contacts remain closed on low voltage, allowing motor to restart upon return of power.

Our starters are built to serve in dedicated high-shock, high vibration, high-abuse environments, and last for decades. We are uncompromising on quality control and assurance, so we manufacture each individual component on all our controls. We build and test them to meet the DoD's most stringent specs.

Key Performance Ratings

- Size 0
- · Dripproof
- · Continuous and general purpose service
- Embedded overload protection
- 115, 220 or 440V
- Lockable
- Up to 15A continuous current

- Thermo static bimetal overload protection
- Low voltage release
- Cable entrance from top or bottom
- Basic motor starter/protection in condensed package
- MIL-DTL-2212 compliant

PANEL MOUNTED PUSH BUTTONS

Designed for continuous duty, our Panel Mounted Push Buttons are watertight, and built to serve in dedicated high-shock, high vibration, high-abuse environments while lasting for decades.

Our Panel Mounted Push Buttons featured up to Water or Oil proof momentary closure/open for use in panels, remote stations, motor controllers.

Key Performance Ratings

- Standard, Oiltight or Watertight forms
- Up to 2 contacts
- · Black or red caps available

- Momentary Closure/Open
- · Normally Open/Normally Closed
- · Up to 2 poles

REMOTE PUSH BUTTON STATIONS

Our Pushbutton Stations are designed for shipboard control applications requiring heavy duty watertight master switches.

Ward Leonard push button stations adhere to MIL-DTL-2212 standards, and are built to serve in dedicated high-shock, high vibration, high-abuse environments while lasting for decades. Stations are available with up to 7 elements equipped with maintained or momentary contacts, as well as indicating lights. For panel or switchboard mounting, individual N.O., N.C. or D.T. elements can be supplied.

We are uncompromising on quality control and assurance, so we manufacture each individual component on all our controls. We build and test them to meet the DoD's most stringent specs.

Key Performance Ratings

- Switches, up to 2-deck pushbuttons and indicating lights in a compact, user defined configuration
- Available with dimmable lights, protective covers and tamper proof covers.

- 1 7 remote functions per device
- · Dimmable Light Covers
- Tamper Proof Covers
- · LED bulbs available
- Ward Leonard will design to your application
- MII -DTI -2212 standards

MASTER SWITCHES

MASTER SWITCHES

Our master switches are MIL-DTL-2212 compliant and allow for remote control of magnetic starters.

Master switches are utilized for remote control of magnetic starter applications, and are available in either 8 or 20 circuits, each with 4 positions maximum, and 10 amps carry.

Key Performance Ratings

· Single switch remote station

- Master, limit, pushbutton, and rotary selector variants
- Spring returning or maintaining contacts
- · Watertight and non-watertight options
- MIL-DTL-2212 compliant

PANEL MOUNTED SWITCHES

Wherever maintained contact switching of control circuits is required, our panel mounted switches are the reliable and durable solution.

Key Performance Ratings

- 1SR to 3SR configurations, momentary or holding positions, up to 6 positions
- Up to 30A, 500V, 60Hz

- · Master, limit, pushbutton, and rotary selector variants
- Spring returning or maintaining contacts
- · Watertight and non-watertight options
- MIL-DTL-2212 compliant

COMPONENTS ACCESSORIES

CONTROL POWER TRANSFORMERS

Series 106.531 Transformers reduce supply voltage to 115 volts A.C. in control circuits of motor starters, controllers and other equipment.

Key Performance Ratings

- · Voltage step down
- · Ambient 50' C
- Continuous duty
- Class B Insulation

FUSE BLOCKS

Use fuse blocks for holding cartridge-type fuses through 30 amps. Designed for use with style F61 fuses of Specification MIL-F-15160.

Key Performance Ratings

- 30 amps
- 600 volts (max.)
- · Single pole

- MIL-E-917
- MIL-S-901 (for shock)
- Fuse clips meet MIL-F-21346

POWER TERMINAL BOARDS

These one-piece terminal boards are for use in power circuits 50 through 600 amps.

Key Performance Ratings

- 50 through 600 amps
- 600 volts (max.)
- · Number of points three

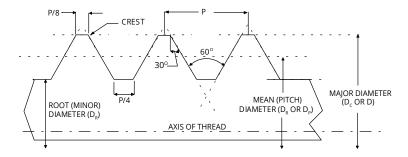
- MIL-C-2212
- MIL-E-917

SWITCHBOXES

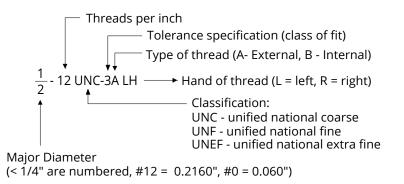
Our switchboxes provide a voice powered telephone system in a Grade A shock and vibration qualified enclosure.

Key Performance Ratings

- Voice Powered
- · Grade A Shock and Vibe
- · Water tight
- Non-magnetic (less than 2.0 mu)


- Shock per MIL-S-901
- Vibration MIL-STD-167
- · Watertight MIL-STD-108E
- · Dielectric Test
- · Insulation resistance
- Electrical continuity
- Non-magnetic (less than 2.0 mu)

RESOURCES


THREAD STANDARDS

UNIFIED AND ISO THREAD GEOMETRY



	UNIFIED		METRIC	
CLASS	EXTERNAL THREAD	INTERNAL THREAD	EXTERNAL THREAD	INTERNAL THREAD
LOOSE	1A	1B	8G	7H
STANDARD	2A	2B	6G	6H
CLOSE	3A	3B	4G	5H

UNIFIED NATIONAL:

METRIC:

THREAD DIMENSIONS

AND TAP DRILL SIZES

	Threa		Outside	Outside Pitch I		Root Tap Drill Decim		
Size	NC UNC	NF UNF	Diameter Inches	Diameter Inches	Diameter Inches	Approx. 75% Full Thread	Equiv. Of Tap Drill	
0	ONC	80	.0600	.0519	.0438	3/64"	.0469	
1	64	80	.0730	.0629	.0527	53	.0595	
1	04	72	.0730	.0640	.0550	53	.0595	
2	56	_	.0860	.0744	.0628	50	.0700	
2	_	64	.0860	.0759	.0657	50	.0700	
3	48	_	.0990	.0855	.0719	47	.0785	
3	_	56	.0990	.0874	.0758	46	.0810	
4	40	_	.1120	.0958	.0795	43	.0890	
4	_	48	.1120	.0985	.0849	42	.0935	
5	40	_	.1250	.1088	.0925	38	.1015	
5	_	44	.1250	.1102	.0955	37	.1040	
6	32	_	.1380	.1177	.0974	36	.1065	
6	_	40	.1380	.1218	.1055	33	.1130	
8	32	_	.1640	.1437	.1234	29	.1360	
8	_	36	.1640	.1460	.1279	29	.1360	
10	24	_	.1900	.1629	.1359	26	.1470	
10	_	32	.1900	.1697	.1494	21	.1590	
12	24	_	.2160	.1889	.1619	16	.1770	
12		28	.2160	.1928	.1696	15	.1800	
1/4"	20	_	.2500	.2175	.1850	7	.2010	
1/4"	_	28	.2500	.2268	.2036	3	.2130	
5/16"	18	_	.3125	.2764	.2403	F	.2570	
5/16"	_	24	.3125	.2854	.2584	I	.2720	
3/8"	16	_	.3750	.3344	.2938	5/16"	.3125	
3/8"		24	.3750	.3479	.3209	Q	.3320	
7/16"	14	_	.4375	.3911	.3447	U	.3680	
7/16"	-	20	.4375	.4050	.3726	25/64"	.3906	
1/2" 1/2"	13	20	.5000 .5000	.4500 .4675	.4001 .4351	27/64" 29/64"	.4219 .4531	
9/16"	12	20	.5625	.5084	.4542	31/64"	.4844	
9/16"	12	18	.5625	.5264	.4903	33/64"	.5156	
5/8"	11	10	.6250	.5660	.5069	17/32"	.5312	
5/8"		18	.6250	.5889	.5528	37/64"	.5781	
3/4"	10	_	.7500	.6850	.6201	21/32"	.6562	
3/4"	_	16	.7500	.7094	.6688	11/16"	.6875	
7/8"	9	_	.8750	.8028	.7307	49/64"	.7656	
7/8"	_	14	.8750	.8286	.7822	13/16"	.8125	
1"	8		1.0000	.9188	.8376	7/8"	.8750	
1"	_	12	1.0000	.9459	.8917	59/64"	.9219	
1 1/8"	7		1.1250	1.0322	.9394	63/64"	.9844	
1 l/8"	_	12	1.1250	1.0709	1.0168	1 3/64"	1.0469	
1 1/4"	7		1.2500	1.1572	1.0644	1 7/64"	1.1094	
1 1/4"	_	12	1.2500	1.1959	1.1418	1 11/64"	1.1719	
1 3/8"	6	_	1.3750	1.2667	1.1585	1 7/32"	1.2187	
1 3/8"	_	12	1.3750	1.3209	1.2668	1 19/64"	1.2969	
1 1/2"	6	_	1.5000	1.3917	1.2835	1 11/32"	1.3437	
1 1/2"		12	1.5000	1.4459	1.3918	1 27/64"	1.4219	
1 3/4"	5	_	1.7500	1.6201	1.4902	1 9/16"	1.5625	
2" 2 1/4"	4 1/2	_	2.0000 2.2500	1.8557	1.7113	1 25/32" 2 1/32"	1.7812 2.0313	
2 1/4"	4 1/2 4 1/2	_	2.2500	2.1057 2.3376	1.9613 2.1752	2 1/4"	2.2500	
2 1/2"	4 1/2	_	2.5000	2.3376	2.1752	2 1/2"	2.2500	
3"	4		3.0000	2.8376	2.4252	2 3/4"	2.7500	
3 1/4"	4		3.2500	3.0876	2.9252	3"	3.0000	
3 1/2"	4	_	3.5000	3.3376	3.1752	3 1/4"	3.2500	
3 3/4"	4	_	3.7500	3.5876	3.4252	3 1/2"	3.5000	
4"	4	_	4.0000	3.3786	3.6752	3 3/4"	3.7500	

PIPE DIMENSIONS

US AND METRIC

NOMINAL PIPE SIZE	OD	SCHEDULE DESIGNATIONS		WALL THICKNESS		WEIGHT		ID		
IN. MM	IN. MM		ASME		IN.	мм	LBS/ FOOT	KG/ METER	IN.	ММ
1/8	0.405	10	40	105	0.049	1.24	0.19	0.28	0.307	7.82
6	10.3	STD XS	40 80	40S 80S	0.068 0.095	1.73 2.41	0.24	0.37 0.47	0.269 0.215	6.84 5.84
1/4	0.540	10		10S	0.065	1.65	0.33	0.49	0.410	10.40
8	13.7	STD XS	40 80	40S 80S	0.088 0.119	2.24 3.02	0.43 0.54	0.63 0.80	0.364 0.302	9.22 7.66
3/8	0.675	10	80	105	0.065	1.65	0.42	0.63	0.545	13.80
10	17.1	STD	40	40S	0.091	2.31	0.57	0.84	0.493	12.48
1/2	0.840	XS 5	80	80S 5S	0.126	3.20 1.65	0.74	0.80	0.423	10.70
15	21.3	10		105	0.083	2.11	0.67	1.00	0.674	17.08
		STD	40	405	0.109	2.77	0.85	1.27	0.622	15.76
		XS 160	80	80S	0.147 0.188	3.73 4.78	1.09 1.31	1.62 1.95	0.546 0.464	13.84 11.74
		XX			0.294	7.47	1.72	2.55	0.252	6.36
3/4	1.050	5		55	0.065	1.65	0.69	1.03	0.920	23.40
20	26.7	10 STD	40	10S 40S	0.083 0.113	2.11 2.87	0.86 1.13	1.28 1.69	0.884 0.824	22.48 20.96
		XS	80	805	0.154	3.91	1.48	2.20	0.742	18.88
		160			0.219	5.56	1.95	2.90	0.612	15.58
1	1.315	XX 5		5S	0.308	7.82 1.65	0.87	3.64 1.29	0.434 1.185	11.06 30.10
25	33.4	10		105	0.109	2.77	1.41	2.09	1.097	27.86
		STD	40	405	0.133	3.38 4.55	1.68	2.50	1.049	26.64
		XS 160	80	80S	0.179 0.250	6.35	2.17 2.85	3.24 4.24	0.957 0.815	24.30 20.70
		XX			0.358	9.09	3.66	5.45	0.599	15.22
1-1/4 32	1.660 42.2	5 10		5S 10S	0.065 0.109	1.65	1.11	1.65 2.69	1.530 1.442	38.90
32	42.2	STD	40	40S	0.109	2.77 3.56	1.81 2.27	3.39	1.442	36.66 35.08
		XS	80	805	0.191	4.85	3.00	4.47	1.278	32.50
		160 XX			0.250 0.382	6.35 9.70	3.77 5.22	5.61 7.77	1.160 0.896	29.50 22.80
1-1/2	1.900	5		55	0.362	1.65	1.28	1.90	1.770	45.00
40	48.3	10		105	0.109	2.77	2.09	3.11	1.682	42.76
		STD XS	40 80	40S 80S	0.145 0.200	3.68 5.08	2.72 3.63	4.05 5.41	1.610 1.500	40.94 38.14
		160	80	803	0.281	7.14	4.86	7.25	1.338	34.02
		XX			0.400	10.15	6.41	9.55	1.100	28.00
2 50	2.375 60.3	5 10		5S 10S	0.065 0.109	1.65 2.77	1.61 2.64	2.39 3.93	2.245 2.157	57.00 54.76
50	00.5	STD	40	405	0.154	3.91	3.66	5.44	2.067	52.48
		XS	80	805	0.218	5.54	5.03	7.48	1.939	49.22
		160 XX			0.344 0.436	8.74 11.07	7.47 9.04	11.11 13.44	1.687 1.503	42.82 38.16
2-1/2	2.875	5		55	0.083	2.11	2.48	3.69	2.709	68.78
65	73.0	10	40	105	0.120	3.05	3.53	5.26	2.635	66.90
		STD XS	80	40S 80S	0.203 0.276	5.16 7.01	5.80 7.67	8.63 11.41	2.469 2.323	62.68 58.98
		160	00	005	0.375	9.53	10.02	14.92	2.125	53.94
3	3,500	XX		55	0.552	14.02	13.71	20.39	1.771	44.96
80	88.9	5 10		10S	0.083 0.120	2.11 3.05	3.03 4.34	4.52 6.46	3.334 3.260	84.68 82.80
		STD	40	40S	0.216	5.49	7.58	11.29	3.068	77.92
		XS	80	80S	0.300	7.62	10.26 14.34	15.27	2.900	73.66
		160 XX			0.438	11.13 15.24	18.60	21.35 27.68	2.624 2.300	66.64 58.42
3-1/2	4.000	5		5S	0.083	2.11	3.48	5.18	3.834	97.38
90	101.6	10 STD	40	105	0.120	3.05 5.74	4.98 9.12	7.41 13.57	3.760 3.548	95.50 90.12
		XS	80	40S 80S	0.226 0.318	8.08	12.52	18.64	3.364	85.44
		XX			0.636	16.15	22.87	34.03	2.728	69.30
4 100	4.500 114.3	5 10		5S 10S	0.083 0.120	2.11 3.05	3.92 5.62	5.84 8.37	4.334 4.260	110.08 108.20
100	114.3	10		103	0.120	3.96	7.24	10.78	4.260	106.20
					0.188	4.78	8.67	12.91	4.124	104.74
		STD XS	40 80	40S 80S	0.237 0.337	6.02 8.56	10.80 15.00	16.08 22.32	4.026 3.826	102.26 97.18
		120	80	003	0.337	11.13	19.02	28.32	3.624	92.04
		160			0.531	13.49	22.53	33.54	3.438	87.32
4-1/2	5.000	STD	40	40S	0.674	17.12 6.27	27.57 12.55	41.03 18.67	3.152 4.506	80.06 114.46
115	127.0	XS	80	805	0.247	9.02	17.63	26.24	4.290	108.96
		XX			0.710	18.03	32.56	48.45	3.580	90.94

AMERICAN WIRE GAUGE

CONDUCTOR SIZE TABLE

AWG	Diameter [inches]	Diameter [mm]	Area [mm2]	Resistance [Ohms/1000 ft]	Resistance [Ohms / km]	Max Current [Amperes]	Max Frequency
0000 (4/0)	0.46	11.684	107	0.049	0.16072	302	125 Hz
000 (3/0)	0.4096	10.40384	85	0.0618	0.202704	239	160 Hz
00 (2/0)	0.3648	9.26592	67.4	0.0779	0.255512	190	200 Hz
0 (1/0)	0.3249	8.25246	53.5	0.0983	0.322424	150	250 Hz
1	0.2893	7.34822	42.4	0.1239	0.406392	119	325 Hz
2	0.2576	6.54304	33.6	0.1563	0.512664	94	410 Hz
3	0.2294	5.82676	26.7	0.197	0.64616	75	500 Hz
4	0.2043	5.18922	21.2	0.2485	0.81508	60	650 Hz
5	0.1819	4.62026	16.8	0.3133	1.027624	47	810 Hz
6	0.162	4.1148	13.3	0.3951	1.295928	37	1100 Hz
7	0.1443	3.66522	10.5	0.4982	1.634096	30	1300 Hz
8	0.1285	3.2639	8.37	0.6282	2.060496	24	1650 Hz
9	0.1144	2.90576	6.63	0.7921	2.598088	19	2050 Hz
10	0.1019	2.58826	5.26	0.9989	3.276392	15	2600 Hz
11	0.0907	2.30378	4.17	1.26	4.1328	12	3200 Hz
12	0.0808	2.05232	3.31	1.588	5.20864	9.3	4150 Hz
13	0.072	1.8288	2.62	2.003	6.56984	7.4	5300 Hz
14	0.0641	1.62814	2.08	2.525	8.282	5.9	6700 Hz
15	0.0571	1.45034	1.65	3.184	10.44352	4.7	8250 Hz
16	0.0508	1.29032	1.31	4.016	13.17248	3.7	11 k Hz
17	0.0453	1.15062	1.04	5.064	16.60992	2.9	13 k Hz
18	0.0403	1.02362	0.823	6.385	20.9428	2.3	17 kHz
19	0.0359	0.91186	0.653	8.051	26.40728	1.8	21 kHz
20	0.032	0.8128	0.518	10.15	33.292	1.5	27 kHz
21	0.0285	0.7239	0.41	12.8	41.984	1.2	33 kHz
22	0.0254	0.64516	0.326	16.14	52.9392	0.92	42 kHz
23	0.0226	0.57404	0.258	20.36	66.7808	0.729	53 kHz
24	0.0201	0.51054	0.205	25.67	84.1976	0.577	68 kHz
25	0.0179	0.45466	0.162	32.37	106.1736	0.457	85 kHz
26	0.0159	0.40386	0.129	40.81	133.8568	0.361	107 kHz
27	0.0142	0.36068	0.102	51.47	168.8216	0.288	130 kHz
28	0.0126	0.32004	0.081	64.9	212.872	0.226	170 kHz
29	0.0113	0.28702	0.0642	81.83	268.4024	0.182	210 kHz
30	0.01	0.254	0.0509	103.2	338.496	0.142	270 kHz
31	0.0089	0.22606	0.0404	130.1	426.728	0.113	340 kHz
32	0.008	0.2032	0.032	164.1	538.248	0.091	430 kHz
33	0.0071	0.18034	0.0254	206.9	678.632	0.072	540 kHz
34	0.0063	0.16002	0.0201	260.9	855.752	0.056	690 kHz
35	0.0056	0.14224	0.016	329	1079.12	0.044	870 kHz
36	0.005	0.127	0.0127	414.8	1360	0.035	1100 kHz
37	0.0045	0.1143	0.01	523.1	1715	0.0289	1350 kHz
38	0.004	0.1016	0.00797	659.6	2163	0.0228	1750 kHz
39	0.0035	0.0889	0.00632	831.8	2728	0.0175	2250 kHz
40	0.0031	0.07874	0.00501	1049	3440	0.0137	2900 kHz

Current (ampacity) Notes: The current ratings shown in the table are for power transmission and have been determined using the rule of 1 amp per 700 circular mils, which is a very conservative rating

FRACTION - DECIMAL

CONVERSION CHART

	_	IN	MM
	$\frac{1}{64}$ —	.015625	.3969
$\binom{1}{32}$.03125	.7938
	$\frac{3}{64}$ —	.046875	1.1906
$\binom{1}{16}$.0625	1.5875
	$\frac{5}{64}$ —	.078125	1.9844
$\binom{3}{32}$ —		.09375	2.3813
	7 64	.109375	2.7781
$\left(\frac{1}{8}\right)$	_	.125	3.1750
	<u>9</u> 64	.140625	3.5719
$\binom{5}{32}$ —		.15625	3.9688
	11 64	.171875	4.3656
$\binom{3}{16}$ —		.1875	4.7625
	13 64	.203125	5.1594
$\binom{7}{32}$	<u> </u>	.21875	5.5563
	64	.234375	5.9531
$\left(\frac{1}{4}\right)$	<u> </u>	.250	6.3500
	64	.265625	6.7469
$\left(\frac{3}{32}\right)$	<u> </u>	.28125	7.1438
(E)	64	.296875	7.5406
(16)	<u></u>	.3125	7.9375
(11)	64	.328125	8.3344
(32)	<u></u>	.34375	8.7313
(3)	64	.359375	9.1282
$\left(\frac{3}{8}\right)$	A	.375	9.5250
(13)	64	.390625	9.9219
(32)		.40625	10.3188
\bigcirc	64	.421875	10.7157
(16)	29	.4375	11.1125 11.5094
(15)	64	.453125	11.5094
$\sqrt{32}$	<u> </u>	.46875 .484375	12.3032
\bigcirc	64	.500	12.3032
$\sqrt{2}$.500	12.7001

	IN	MM
33 64	— .515625	13.096
$\left(\frac{17}{32}\right)$.53125	13.493
$\begin{array}{c} \underline{} \\ \underline{} \\$.546875	13.890
$\binom{9}{16}$	— .5625	14.287
<u>37</u> 64	— .578125	14.684
$\left(\frac{19}{32}\right)$.59375	15.081
$\begin{array}{c} $	— .609375	15.478
$\left(\frac{5}{8}\right)$	— .625	15.875
$\bigcirc \qquad \stackrel{41}{64}$	— .640625	16.271
$\left(\frac{21}{32}\right)$	— .65625	16.668
$\begin{array}{c} \underline{} \\ \underline{} \\$	— .671875	17.065
$\left(\frac{11}{16}\right)$	— .6875	17.462
$\begin{array}{c} \underline{} \\ 64 \end{array}$	— .703125	17.859
$\left(\frac{23}{32}\right)$. 71875	18.256
$ \begin{array}{c} 47 \\ \hline 64 \end{array} $	— .734375	18.653
$\left(\frac{3}{4}\right)$	— .750	19.050
$ \begin{array}{c} 49 \\ \hline 64 \end{array} $	— .765625	19.447
$\left(\frac{25}{32}\right)$.78125	19.843
<u>51</u> 64	— .796875	20.240
$\left(\frac{13}{16}\right)$	— .8125	20.6375
64	— .828125	21.0345
$\left(\frac{27}{32}\right)$	— .84375	21.431
64	— .859375	21.8282
$\left(\frac{7}{8}\right)$	— .875	22.2251
64	— .890625	22.6220
$\left(\frac{29}{32}\right)$	— .90625	23.0188
64	— .921875	23.4157
$(\frac{15}{16})$	— .9375	23.8126
	— .953125	24.2095
$\left(\frac{31}{32}\right)$	— .96875	24.6063
63 64	— .984375	25.0032
1 —	— 1.000	25.4001

SHEET METAL

GAUGE CHART

	Steel	Galvanized Steel	Stainless Steel	Aluminium	Electrical Steel
Gauge	in (mm)	in (mm)	in (mm)	in (mm)	in (mm)
3	0.2391 (6.07)	_	_	_	_
4	0.2242 (5.69)	_	_	_	_
5	0.2092 (5.31)	_	_	_	_
6	0.1943 (4.94)	_	_	0.162 (4.1)	_
7	0.1793 (4.55)	_	0.1875 (4.76)	0.1443 (3.67)	_
8	0.1644 (4.18)	0.1681 (4.27)	0.1719 (4.37)	0.1285 (3.26)	_
9	0.1495 (3.80)	0.1532 (3.89)	0.1563 (3.97)	0.1144 (2.91)	_
10	0.1345 (3.42)	0.1382 (3.51)	0.1406 (3.57)	0.1019 (2.59)	_
11	0.1196 (3.04)	0.1233 (3.13)	0.1250 (3.18)	0.0907 (2.30)	_
12	0.1046 (2.66)	0.1084 (2.75)	0.1094 (2.78)	0.0808 (2.05)	_
13	0.0897 (2.28)	0.0934 (2.37)	0.094 (2.4)	0.072 (1.8)	_
14	0.0747 (1.90)	0.0785 (1.99)	0.0781 (1.98)	0.0641 (1.63)	_
15	0.0673 (1.71)	0.0710 (1.80)	0.07 (1.8)	0.057 (1.4)	_
16	0.0598 (1.52)	0.0635 (1.61)	0.0625 (1.59)	0.0508 (1.29)	0.0625 (1.59)
17	0.0538 (1.37)	0.0575 (1.46)	0.056 (1.4)	0.045 (1.1)	0.0560 (1.42)
18	0.0478 (1.21)	0.0516 (1.31)	0.0500 (1.27)	0.0403 (1.02)	0.0500 (1.27)
19	0.0418 (1.06)	0.0456 (1.16)	0.044 (1.1)	0.036 (0.91)	0.0453 (1.15)
20	0.0359 (0.91)	0.0396 (1.01)	0.0375 (0.95)	0.0320 (0.81)	0.0375 (0.952)
21	0.0329 (0.84)	0.0366 (0.93)	0.034 (0.86)	0.028 (0.71)	0.0340 (0.860)
22	0.0299 (0.76)	0.0336 (0.85)	0.031 (0.79)	0.025 (0.64)	0.0310 (0.787)
23	0.0269 (0.68)	0.0306 (0.78)	0.028 (0.71)	0.023 (0.58)	0.0280 (0.711)
24	0.0239 (0.61)	0.0276 (0.70)	0.025 (0.64)	0.02 (0.51)	0.0250 (0.635)
25	0.0209 (0.53)	0.0247 (0.63)	0.022 (0.56)	0.018 (0.46)	0.0220 (0.559)
26	0.0179 (0.45)	0.0217 (0.55)	0.019 (0.48)	0.017 (0.43)	0.0185 (0.470)
27	0.0164 (0.42)	0.0202 (0.51)	0.017 (0.43)	0.014 (0.36)	0.0170 (0.432)
28	0.0149 (0.38)	0.0187 (0.47)	0.016 (0.41)	0.0126 (0.32)	0.0155 (0.394)
29	0.0135 (0.34)	0.0172 (0.44)	0.014 (0.36)	0.0113 (0.29)	0.0140 (0.356)
30 31	0.0120 (0.30)	0.0157 (0.40)	0.013 (0.33)	0.0100 (0.25) 0.0089 (0.23)	0.0125 (0.318) 0.0100 (0.254)
32	0.0105 (0.27) 0.0097 (0.25)	0.0142 (0.36)	0.011 (0.28)	0.0069 (0.23)	0.0100 (0.254)
33	0.0097 (0.23)		_	_	_
34	0.0090 (0.23)		_	_	_
35	0.0075 (0.19)	_	_	_	_
36	0.0067 (0.17)	_	_	_	_
37	0.0064 (0.16)	_	_	_	_
38	0.0060 (0.15)	_	_	_	_
33	0.0071	0.18034	0.0254	206.9	678.632
34	0.0063	0.16002	0.0201	260.9	855.752
35	0.0056	0.14224	0.016	329	1079.12
36	0.005	0.127	0.0127	414.8	1360
37	0.0045	0.1143	0.01	523.1	1715
38	0.004	0.1016	0.00797	659.6	2163
39	0.0035	0.0889	0.00632	831.8	2728
40	0.0031	0.07874	0.00501	1049	3440

ELECTRICAL DESIGN RULES

Wire sizes for a given contact size (using 125 $^{\circ}$ C MIL-DTL-16878/15 wire at 50 $^{\circ}$ C ambient).

AWG	MAX Amperage	MAX Contact Size
18	10 A	N/A
16	12 A	N/A
14	15 A	N/A
12	20 A	0
10	30 A	1
8	65 A	2
6	86 A	2
4	114 A	3
2	155 A	4
1/0	213 A	4
2/0	246 A	4
3/0	287 A	5
4/0	332 A	5
250	373 A	5
400	504 A	5
500	574 A	6
1000	865 A	7

Ratings for multi-speed, magnetic controllers for nonplugging and nonjogging duty for constant-horsepower motors.

Size of			Three-phase hp at		Three-phase power at	
controller	current rating (amperes)	115 V	440 V	115 V	440 V	
0	18	2	5	3.6 kW	13.7 kW	
1	27	3	10	5.4 kW	20.6 kW	
2	45	71/2	25	9 kW	34.3 kW	
3	90	15	50	18 kW	68.6 kW	
4	135	30	100	26.9 kW	102.9 kW	
5	270		200	53.7 kW	205.8 kW	
6	540		400	107.4 kW	411.5 kW	
7	810		600	161.1 kW	617.3 kW	

Ratings for multi-speed, magnetic controllers for nonplugging and nonjogging duty for constant-horsepower motors

Size of	Continuous	Three-ph	ase hp at
controller	current rating (amperes)	115 V	440 V
0	18	1	3
1	27	2	71/2
2	45	_	20
3	90	_	40
4	135	_	75
5	270	_	150
6	540	_	300
7	810	_	450

Powered by FAIRBANKS MORSE **DEFENSE**

Ward Leonard

401 Watertown Rd. Thomaston, CT 06787 USA 1-860-283-5801 ©2023 Fairbanks Morse Defense. All rights reserved. Form WL1002-1223